Поиск в словарях
Искать во всех

Физический энциклопедический словарь - историческаясправка.

 

Историческаясправка.

историческаясправка.
Первые письменные свидетельства о М. (Китай) имеют более чем двухтысячелетнюю давность. В них упоминается о применении естеств. пост. магнитов в кач-ве компасов. В работах древнегреч. и римских учёных есть упоминание о притяжении и отталкивании магнитов и о намагничивании в присутствии магнита железных опилок (напр., у рим. поэта и философа-материалиста Лукреция в поэме «О природе вещей», 1 в. до н. э.). В эпоху средневековья в Европе стал широко применяться магн. компас (с 12 в.), были предприняты попытки эксперим. изучения св-в магнитов разной формы (франц. учёный Пьер де Марикур, 1269). Результаты исследований М. в эпоху Возрождения были обобщены в труде англ. физика У. Гильберта «О магните, магнитных телах и о большом магните — Земле» (1600). Гильберт показал, в частности, что Земля — магн. диполь, и доказал невозможность разъединения двух разноимённых полюсов магнита. Далее учение о М. развивалось в работах франц. учёного Р. Декарта, рус. учёного Ф. Эпинуса и франц. физика Ш. Кулона. Декарт был автором первой подробной метафиз. теории М. и геомагнетизма («Начала философии», ч. 4, 1644); он исходил из существования особой магн. субстанции, обусловливающей своим присутствием и движением М. тел.

В трактате «Опыт теории электричества и магнетизма» (1759) Эпинус подчеркнул аналогию между электрич. и магн. явлениями. Эта аналогия, как показал Кулон (1785—89), имеет определённое количеств. выражение: вз-ствие точечных магн. полюсов подчиняется тому же закону, что и вз-ствие точечных электрич. зарядов (Кулона закон). В 1820 дат. физик X. Эрстед открыл магн. поле электрич. тока. В том же году франц. физик А. Ампер установил законы магн. вз-ствия токов, эквивалентность магн. св-в кругового тока и тонкого плоского магнита; М. он объяснял существованием мол. токов. В 30-х гг. 19 в. нем. учёные К. Гаусс и В. Вебер развили матем. теорию геомагнетизма и разработали методы магн. измерений.

Новый этап в изучении М. начинается с работ англ. физика М. Фарадея, к-рый дал последоват. трактовку явлений М. на основе представлений о реальности эл.-магн. поля. Ряд важнейших открытий в области электромагнетизма (эл.-магн. индукцияФарадей, 1831; правило Ленца — Э. X. Ленц, 1833, и др.), обобщение открытых эл.-магн. явлений в трудах англ. физика Дж. К. Максвелла (1872), систематич. изучение св-в ферромагнетиков и парамагнетиков (А. Г. Столетов, 1872; франц. физик П. Кюри, 1895, и др.) заложили основы совр. макроскопич. теории М.

Изучение М. на микроскопич. уровне стало возможно после открытия электронно-ядерной структуры атомов. На основе классич. электронной теории голл. физика X. А. Лоренца франц. учёный П. Ланжевен в 1905 построил теорию диамагнетизма, а также квазиклассич. теорию парамагнетизма. В 1892 рус. учёный Б. Л. Розинг и в 1907 П. Вейс (Франция) высказали идею о существовании внутр. мол. поля, обусловливающего св-ва ферромагнетиков. Открытие электронного спина и его М. (С. Гаудсмит, Дж. Ю. Уленбек, США, 1925), создание квант. механики привели к развитию квант. теории диа-, параи ферромагнетизма. На основе квантовомеханич. представлений (пространств. квантования) франц. физик Л. Бриллюэн в 1926 нашёл зависимость намагниченности парамагнетиков от внеш. магн. поля и темп-ры. Нем. физик Ф. Хунд в 1927 провёл сравнение экс-

359



перим. и теор. значений эфф. магн. моментов ионов в разл. парамагн. солях, что привело к выяснению влияния электрич. полей парамагн. кристалла на «замораживание» орбит. моментов ионов. Исследования этого явления позволили установить, что намагниченность кристалла определяется почти исключительно спиновыми моментами (У. Пенни и Р. Шлапп; Дж. ВанФлек, США, 1932). В 30-х гг. была построена квантовомеханич. теория магн. св-в свободных эл-нов (парамагнетизм Паули, 1927; Ландау диамагнетизм, 1930). Существ. значение для дальнейшего развития теории парамагнетизма имело предсказанное Я. Г. Дорфманом (1923) и затем открытое Е. К. Завойским (1944) явление электронного парамагнитного резонанса (ЭПР).

Созданию квант. теории ферромагнетизма предшествовали работы нем. физика Э. Изинга (1925, двухмерная модель ферромагнетиков), Я. Г. Дорфмана (1927, им была доказана немагн. природа мол. поля), нем. физика В. Гейзенберга (1926, квантовомеханич. расчёт атома гелия), нем. физиков В. Гейтлера и Ф. Лондона (1927, расчёт молекулы водорода). В двух последних работах был использован открытый в квант. механике эффект обменного взаимодействия эл-нов (П. Дирак, Великобритания, 1926) в оболочке атомов и молекул и установлена его связь с магн. св-вами электронных систем, подчиняющихся Ферми — Дирака статистике (Паули принцип). Квант. теория ферромагнетизма была начата работами Я. И. Френкеля (1928, коллективизиров. модель) и Гейзенберга (1928, модель локализов. спинов). Рассмотрение ферромагнетизма как квантового кооперативного явления (амер. физики Ф. Блох, Дж. Слейтер, 1930) привело к открытию спиновых волн. В 1932—33 франц. физик Л. Неель и Л. Д. Ландау предсказали существование антиферромагнетизма. Изучение новых классов магн. в-в — антиферромагнетиков и ферритов — позволило глубже понять природу М. Была выяснена роль магнитоупругой энергии в происхождении энергии магн. анизотропии, построена теория доменной структуры и освоены методы её эксперим. изучения.

Развитию теории М. в значит. мере способствовало создание новых эксперим. методов исследования в-в. Нейтронографич. методы позволили определить типы ат. магн. структур. Ферромагнитный резонанс, первоначально открытый и исследованный в работах В. К. Аркадьева (1913), а затем Дж. Гриффитса (США, 1946), и антиферромагнитный резонанс (К. Гортер и др., 1951) позволили начать эксперим. исследования процессов магн. релаксации, а также дали независимый метод определения эфф. полей анизотропии в феррои антиферромагнетиках. Физ. методы исследований, основанные на явлении ядерного магнитного резонанса (Э. Пёрселл и др., США, 1946) и Мёссбауэра эффекте (1958), значительно углубили знания о распределении спиновой плотности в в-ве, особенно в металлич. ферромагнетиках. Наблюдение рассеяния нейтронов и света позволили для ряда в-в определить спектры спиновых волн. Параллельно с эксперим. работами развивались и разл. аспекты теории М.: магн. симметрии кристаллов, ферромагнетизма коллективизированных эл-нов, фазовых переходов II рода и критических явлений, а также модели одномерных и двухмерных феррои антиферромагнетиков.

Успехи в изучении природы магн. явлений позволили осуществить синтез новых перспективных магн. материалов: ферритов для ВЧ и СВЧ устройств, высококоэрцитивных соединений типа SmCo5 (см. Магнит постоянный), прозрачных ферромагнетиков, аморфных магнетиков (в т. ч. спиновых стёкол, в к-рых наблюдается беспорядочное распределение ориентации ат. магн. моментов по узлам крист. решётки), феррои антиферро-магн. аморфных материалов (т. н. металлических стёкол, или метглассов) и др.

• Т а м м И. Е., Основы теории электричества, 9 изд., М., 1976; Л а н д а у Л. Д., Л и ф ш и ц Е. М., Электродинамика сплошных сред, М., 1959; Вонсовский С. В., Магнетизм, М., 1971; К и т т е л ь Ч., Введение в физику твердого тела, пер. с англ., М., 1978; Уайт Р.-М., Квантовая теория магнетизма, пер. с англ., М., 1972; Б о з о р т Р., Ферромагнетизм, пер. с англ., М., 1956; М а т т и с Д., Теория магнетизма. Введение в изучение кооперативных явлений, пер. с англ., М., 1967.

С. В. Вонсовский.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):